

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HC5F600-S

Introduction

The HC5F family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HC5F family gives you the choice of having different peak currents (from \pm 200 A up to \pm 900 A) in the same housing.

Features

- Open Loop transducer using the Hall effect
- Low voltage application
- Unipolar + 5 V DC power supply
- Primary current measuring range up to ±600 A
- Maximum RMS primary current limited by the busbar, the magnetic core or the ASIC temperature T° < +150 °C
- Operating temperature range: -40 °C < T° < +125 °C
- Output voltage: full ratiometric (sensitivity and offset)
- High speed transducer.

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift.

Automotive applications

- Electrical Power Steering
- Starter Generators
- Converters.

Principle of HC5F Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density *B*, contributing to the rise of the Hall voltage, is generated by the primary current I_p to be measured. The current to be measured I_p is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

$$(I_{\rm P})$$
 = constant (a) x $I_{\rm P}$

The Hall voltage is thus expressed by:

R

 $V_{\rm H}$ = ($R_{\rm H}$ /d) x I x constant (a) x $I_{\rm P}$

Except for $I_{\rm p},$ all terms of this equation are constant. Therefore:

 $V_{\rm H}$ = constant (b) x $I_{\rm P}$

The measurement signal $V_{\rm H}$ amplified to supply the user output voltage or current.

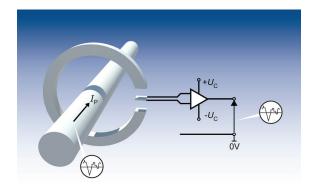
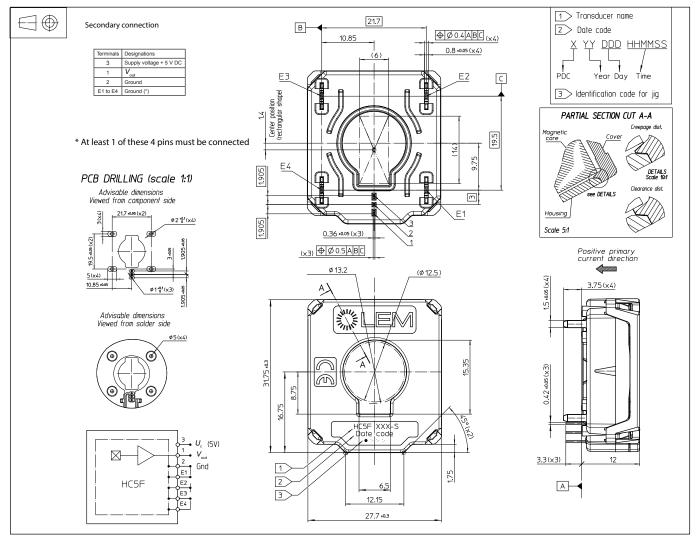



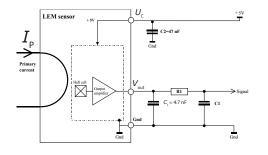
Fig. 1: Principle of the open loop transducer

HC5F600-S

Dimensions (in mm)

Mechanical characteristics

Plastic case


•

PA66-GF25

- Magnetic core
 FeSi alloy
 - Mass 26 g
- Electrical terminal coating Copper alloy base

tin plated (lead free)

Electronic schematic

Remarks

$$I_{\rm P} = \left(\frac{5}{U_{\rm c}} \cdot V_{\rm out} - V_{\rm o}\right) \cdot \frac{1}{G}$$
 with G in (V/A)

 V_{out} > V_o when I_P flows in the positive direction (see arrow on drawing).

 $\begin{array}{l} R_{\rm LOAD} > 10 \ {\rm K}\Omega \\ C_{\rm LOAD} & {\rm Nominal \ value \ 4.7 \ nF \pm 10 \ \%} \\ (C_{\rm LOAD} \ {\rm is \ obligation \ to \ stabilize \ and \ to \ avoid \ the \ ondulation \ of \ the \ output \ signal)} \\ R1C1 \ {\rm low \ pass \ filter \ EMC \ protection \ (optional)} \end{array}$

HC5F600-S

Absolute ratings (not operating)

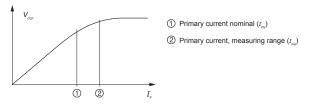
Parameter	Symbol	Unit	Specification			Conditions
			Min	Typical	Max	Conditions
Supply over voltage		V			7	No operating, 1 min @ 25°C
Reverse voltage	U _c	V	Not applicable			
Ambient storage temperature	T _s	°C	- 55		150	Tested after 64 h @ - 55 °C connected
Electrostatic discharge voltage	U _{ESD}	kV			2	JESD22-A 114-B
Maximum admissible vibration (random)	γ	m∙s-²			200	ISO 16750-3&4.1.2.1.2.1
Rms voltage for AC insulation test, 50 Hz, 1 min	U _d	kV			1.2	IEC 60664 Part 1
Creepage distance	d _{Cp}	mm		1.2		
Clearance	d _{ci}	mm		1.65		
Maximum continuous output current	I _{out}	mA	- 10		10	
Maximum output voltage	V _{out}	V	- 0.5		$U_{\rm c}^{}$ + 0.5	No operating
Maximum Output short circuit duration	t _c	S			2	

Operating characteristics in nominal range ($I_{\rm PN}$)

Parameter	Symbol	Unit		pecificat		Conditions						
Electrical Data												
Primary current, measuring range	I _{PM}	A	- 600		600							
Supply voltage ¹⁾	U _c	V	4.75	5.00	5.25							
Ambient operating temperature	T _A	°C	- 40		125							
Output voltage (Analog)	V _{out}	V	$V_{\rm out} = (U_{\rm C}/5) \cdot (V_{\rm o} + G \cdot I_{\rm P})$									
Sensitivity	G	mV/A		3.33		@ U _c =5 V						
Current consumption	I _c	mA		12	20							
Load resistance	R	KΩ	10									
Capacitive loading	CL	F		4.7								
Output internal resistance	R _{out}	Ω			10							
Performance Data ¹⁾												
Sensitivity error	ε _g	%	- 2		2	@ $T_{A} = 25 \text{ °C}$, @ $U_{C} = 5 \text{ V}$						
Electrical offset	I _{OE}	A	- 2.7	± 1.2	2.7	@ T _A =25 °C						
Magnetic offset	I _{om}	A	- 1.8	± 1.0	1	@ After excursion to $\pm I_{PM}$ @ $T_{A} = 25 \text{ °C}$						
Offset current	I	A	- 3.6		3.6	<i>T</i> _A =25 °C						
Average temperature coefficient of I_{OE}	TCI	mA/°C	- 24	± 6	24	@ -40 °C < T° < 125 °C, U _c						
Average temperature coefficient of G	TCG _{AV}	%/°C	- 0.050	± 0.050	0.050	@ -40 °C < T° < 125 °C, U _c						
Linearity error	ε	% I _P	- 1		1	Of full range						
Step response time to 90 % I _{PN}	t,	μs		5	10							
Frequency bandwidth ²⁾	BW	kHz	30			@ - 3 dB						
Output voltage low	V _{out L}	V	0.1			@ U _c =5 V						
Output voltage high	V _{out H}	V			4.9	@ U _c = 5 V						
Output voltage noise peak-peak	V _{no p-p}	mV			22	DC to 1 MHz						
Output rms voltage noise rms	V _{no rms}	mV			3.3	DC to 1 MHz						

<u>Notes</u>: ¹⁾ The output voltage V_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage U_{c} relative to the following formula:

$$I_{\rm P} = \left(\frac{5}{U_{\rm c}} \cdot V_{\rm out} - V_{\rm o}\right) \cdot \frac{1}{G}$$
 with G in (V/A)


 $^{\mbox{\tiny 2)}}$ Small signal only to avoid excessive heating of the busbar, the magnetic core and the ASIC.

HC5F600-S

PERFORMANCES PARAMETERS DEFINITIONS

Primary current definition:

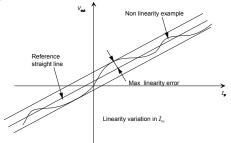
Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution. this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, maximal and minimal values are determined during the initial characterization of a product.

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

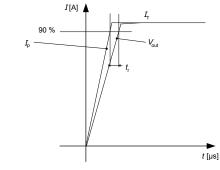

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{\rm PN}$.

Linearity:

The maximum positive or negative discrepancy with a reference straight line $V_{\rm out} = f(I_{\rm P})$. Unit: linearity (%) expressed with full scale of $I_{\rm PN}$.

Response time (delay time) t:

The time between the primary current signal $(I_{\rm PN})$ and the output signal reach at 90 % of its final value.



Sensitivity:

The Transducer's sensitivity G is the slope of the straight line $V_{out} = f(I_p)$, it must establish the relation:

 $V_{\text{out}}(I_{\text{P}}) = U_{\text{C}}/5 (G \cdot I_{\text{P}} + V_{\text{O}})$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 °C.

The offset variation $I_{o\tau}$ is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE} \max - I_{OE} \min$$

The Offset drift $\mathit{TCI}_{\rm \tiny OEAV}$ is the $\mathit{I}_{\rm \tiny OT}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 °C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 G_{τ} = (Sensitivity max - Sensitivity min) / Sensitivity at 25 °C.

The sensitivity drift $\mathit{TCG}_{\rm\scriptscriptstyle AV}$ is the G_{τ} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0 A$:

The offset voltage is the output voltage when the primary current is zero. The ideal value of V_{o} is $U_{c}/2$ at U_{c} = 5 V. So, the difference of $V_{\rm o}$ - $U_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC guiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking Test Plan Auto" sheet.