

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW-S05

Introduction

The HAH1BVW family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH1BVW family gives you the choice of having different current measuring ranges in the same housing.

Features

- Ratiometric transducer
- Open Loop transducer using the Hall effect
- Low voltage application
- Unipolar + 5 V DC power supply
- Primary current measuring range ± 500 A
- Maximum RMS primary admissible current: defined by busbar to have T° < +150 °C
- Operating temperature range: -40 °C < T° < 125 °C
- Output voltage: full ratio-metric (in sensitivity and offset)

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- Galvanic separation
- Non intrusive solution.

Automotive applications

Battery Management.

Principle of HAH1BVW Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density *B*, contributing to the rise of the Hall voltage, is generated by the primary current I_{p} to be measured. The current to be measured $I_{\rm P}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, B is proportional to: 4

$$S(I_{\rm P})$$
 = constant (a) x $I_{\rm P}$

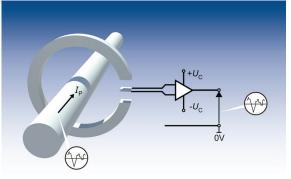
The Hall voltage is thus expressed by:

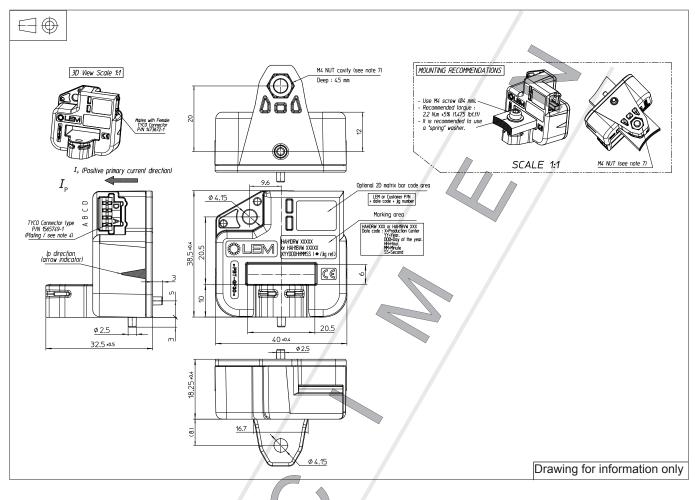
 $V_{\rm H}$ = ($R_{\rm H}$ /d) x I x constant (a) x $I_{\rm P}$

Except for $I_{\rm p}$, all terms of this equation are constant. Therefore:

$$V_{\rm H}$$
 = constant (b) x $I_{\rm P}$

The measurement signal $V_{\rm H}$ amplified to supply the user output voltage or current.




Fig. 1: Principle of the open loop transducer

N° 90.K6.50.005.0

G121106CFTSA/version 1

Dimensions HAH1BVW S/05 (in mm)

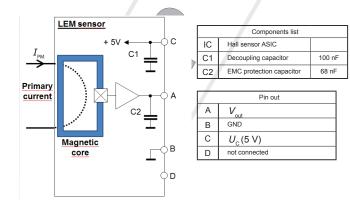
Mechanical characteristics

Plastic case

PBT GF30

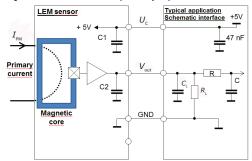
Magnetic core •

FeSi alloy Brass tin plated


Pins • Mass

57 g ± 5 %

2.2 N·m ± 5 %


Mounting recommendation

- TYCO connector P/N 1473672-1 • Mating connector type
- Assembly torque
- Soldering type N/A
- **Electronic schematic**

- **Remarks** $I_{\rm P} = \left(\frac{5}{U_{\rm c}} \cdot V_{\rm out} V_{\rm o}\right) \cdot \frac{1}{G}$ with G in (V/A)
- $V_{\rm out}$ > $V_{\rm o}$ when $I_{\rm P}$ flows in the positive direction (see arrow on drawing).

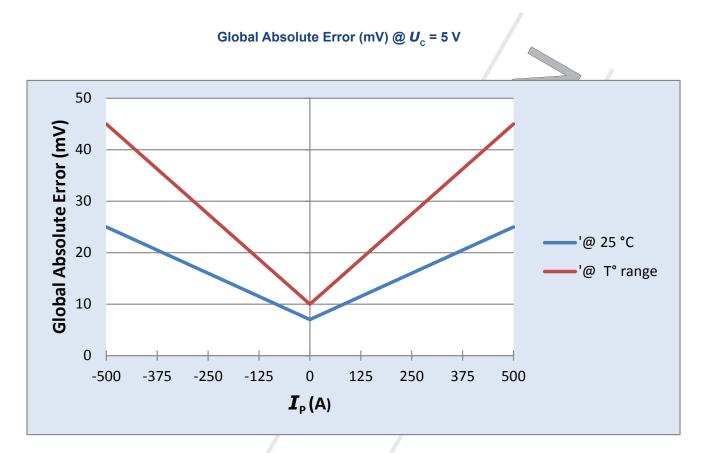
System architecture (example)

 $C_{\rm L}$ < 100 nF EMC protection (optional) $R_{\rm c}$ Low pass filter (optional)

On board diagnostic

 $R_{\rm I} > 10 \text{ K}\Omega$. Resistor for signal line diagnostic (optional)

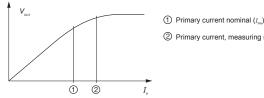
V _{out}	Diagnostic
Open circuit	V _{IN} ≤ 0.15 V
Short GND	V _{IN} ≤ 0.15 V


Absolute ratings (not operating)

Devemeter	Symbol	Unit	Specification			a
Parameter			Min	Typical	Max	Conditions
Maximum supply voltage	U _c	V			14	
Maximum reverse supply voltage	U _c	V	- 14			
/laximum output Voltage	V _{out}	V	- 14		14	V _{out} Reverse / Forward voltage
Maximum output Current	I _{out}	mA	- 10		10	
Ambient storage temperature	T _s	°C	- 40		125	
Electrostatic discharge voltage (HBM)	U _{ESD}	kV			2	JESD22-A114-B
Maximum admissible vibration (random rms)	Y	m∙s ⁻²			96.6	10 to 2000 Hz, - 40 °C to 125 °C
RMS voltage for AC insulation test	U _d	kV			2	50 Hz, 1 min
Creepage distance	d _{Cp}	mm	5.2			
Clearance	d _{ci}	mm	4.9			
Comparative traking index	СТІ		PLC	3 (175 X -	250 V)	

Operating characteristics in nominal range (I_{PN})

			Specification			
Parameter	Symbol	Unit		Typical	Max	Conditions
		Ele	ectrical			
Primary current, measuring range	I _{PM}	A	- 500		500	
Primary nominal DC or RMS current	I _{PN}	A	- 500		500	
Supply voltage	U _c	V	4.5	5	5.5	
Ambient operating temperature	T _A	°C	- 40		125	
Output voltage	V _{out}	V	$V_{out} = ($	$U_{\rm c}/5) \cdot (V_{\rm o})$	$+ G \cdot I_{P}$)	
Sensitivity	G	mV/A		4		@ T _A = 25 °C
Offset voltage	V _o	V		2.5		
Output resolution		mV		2.5		
Output clamping high voltage	V _{sz}		4.74			@ U _c = 5 V
Output clamping low voltage	V _{sz}				0.26	@ U _c = 5 V
Current concurration		mA		7		$@ T_{A} = 25 °C, @ U_{C} = 5 V$
Current consumption	I _c				10	
Load resistance	R	ΚΩ	10			@ T _A = 25 °C
	,			1		@ T _A = 25 °C
Output internal resistance	R _{out}	Ω			10	
		Perf	ormanc	e Data		•
Ratiometricity error	ε _r	%		± 0.2		
Sensitivity error	ε _g	%		± 1		@ T _A = 25 °C
Electrical offset voltage	V _{OE}	mV		± 2.5		@ $T_{\rm A}$ = 25 °C,@ $U_{\rm C}$ = 5 V
Magnetic offset voltage	V _{om}	mV		± 2		@ U _c = 5 V, @ T _A = 25 °C
Linearity error	ε	%	- 1		1	% of full scale
Average temperature coefficient of V _{OE}	TCV	mV/°C		± 0.06		@ U _c = 5 V
Average temperature coefficient of G	TCG _{AV}	%/°C		± 0.02		
Step response time @ 70 %	t,	ms			10	
Frequency bandwidth	BW	Hz		70		@ - 3 dB
Output voltage noise peak-peak	V _{no p-p}	mV			10	DC to 1 MHz
Output RMS voltage poise	V _{no rms}	mV			1.6	
Start up time	t _{start}	ms			1	
Setting time after overload	t,	ms			10	



$I_{_{ m P}}$ (A)	Accuracy @ 25 °C (mV)	Accuracy @ T ° range (mV)		
- I _{Pmax}	25	45		
0	7	10		
I _{Pmax}	25	45		
R				

PERFORMANCES PARAMETERS DEFINITIONS

Primary current definition:

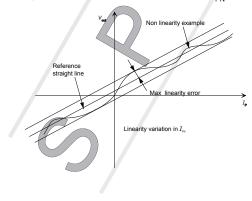
Primary current, measuring range (I___)

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, maximal and minimal values are determined during the initial characterization of a product.

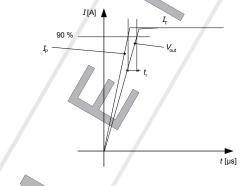
Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.


Magnetic offset:

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{\rm PN}$.

Linearity:


The maximum positive or negative discrepancy with a reference straight line $V_{out} = f(I_P)$.

Unit: linearity (%) expressed with full scale of I_{DN}

Response time (delay time) t:

The time between the primary current signal (I_{PN}) and the output signal reach at 90 % of its final value.

Sensitivity

The Transducer's sensitivity G is the slope of the straight line $V_{\text{out}} = f(I_{\text{P}})$, it must establish the relation: $V_{\text{out}}(I_{\text{P}}) = U_{\text{C}}/5 (G \cdot I_{\text{P}} + V_{\text{o}})$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 °C.

The offset variation $I_{\alpha\tau}$ is a maximum variation the offset in the temperature range:

 $I_{OT} = I_{OE} \max - I_{OE} \min$

The Offset drift $TCI_{\rm OEAV}$ is the $I_{\rm OT}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 °C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 G_{τ} = (Sensitivity max - Sensitivity min) / Sensitivity at 25 °C.

The sensitivity drift TCG_{AV} is the G_{T} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0$ A:

The offset voltage is the output voltage when the primary current is null. The ideal value of $V_{\rm o}$ is $U_{\rm c}/2$ at $U_{\rm c}$ = 5 V. So, the difference of V_{\odot} - $U_{c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.

Name	Standard		
CHARACTER	IZATION @ 25 °C		
Sensitivity / Accuracy / Overall accuracy	LEM 98.20.00.574.0		
Offset / Electrical Offset / Magnetic Offset	LEM 98.20.00.573.0		
Linearity error	LEM 98.20.00.370.0		
Current Consumption	LEM 98.20.00.579.0		
CHARACTERIZATI	ON WITH T °C (initial)		
Sensitivity / Accuracy / Overall accuracy	LEM 98.20.00.574.0		
T °C variation of / Temperature Coefficient of G	LEM 98.20.00.574.0		
Offset / Electrical Offset / Magnetic Offset	LEM 98.20.00.573.0		
T °C variation of /Temperature Coefficient of Offset	LEM 98.20.00.573.0		
Linearity error	LEM 98.20.00.370.0		
Current Consumption	LEM 98.20.00.579.0		
ELECTRICAL	_ TESTS @ 25 °C		
Phase delay check	100 Hz to 10 kHz At 20 A peak		
Noise measurement	Sweep from DC to 1 MHz		
Response time di/dt	100 A/µs. I pulse = 700 A		
dv/dt	2000 V/µs. V = 2000 V		
Dielectric Withstand Voltage test	2500 V AC / 1 min / 50 Hz		
Insulation Resistance test	500 V DC, time = 60 s R insulation >= 500 MΩ Minimum		
ENVIRONMENTA	L TESTS (CLIMATIC)		
Thermal shock	IEC 60068-2-14 Na (01/2009)		
Steady state T°C Humidity bias life test	JESD 22-A101 (03/2009)		
MECHAN	ICAL TESTS		
Vibration Random in T°C	IEC 60068-2-64 (02/2008)		
Shocks	IEC 60068-2-27 (02/2008)		
Free Fall (Device not packaged)	IEC 60068-2-31 §5.2: method 1 (05/2008)		
Е	S.2. Method ((05/2008)		
Immunity to ElectroStatic Discharges (Handling of devices)	ISO 10605 (07/2008)		
Immunity to Conducted disturbances (BCI)	ISO 11452-4 (12/2011)		
Emission Radiated (ALSE)	CISPR 25 (03/2008)		
6			