

AUTOMOTIVE CURRENT TRANSDUCER HAH1BV S/20

Introduction

The HAH1BV family is for the electronic measurement of DC, AC or pulsed currents in high power automotive applications with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH1BV family gives you the choice of having different current measuring ranges in the same housing (from \pm 200 A up to \pm 900 A).

Features

- Open Loop transducer using the Hall effect
- Unipolar + 5 V DC power supply
- Primary current measuring range up to ± 500 A
- Maximum RMS primary current limited by the busbar, the magnetic core or the ASIC temperature T° < + 150°C
- Operating temperature range: 40°C < T° < + 125°C
- Output voltage: full ratiometric (in sensitivity and offset)
- · Compact design.

Advantages

- Excellent accuracy
- Very good linearity
- · Very low thermal offset drift
- Very low thermal sensitivity drift
- Wide frequency bandwidth
- No insertion losses.

Automotive applications

- Battery monitoring
- Starter Generators
- Inverters
- HEV application
- · EV application.

Principle of HAH1BV Family

The open loop transducers uses a Hall effect integrated circuit.

The magnetic flux density ${\bf B}$, contributing to the rise of the Hall voltage, is generated by the primary current ${\bf I}_{\rm p}$ to be measured.

The current to be measured I_p is supplied by a current source i.e. battery or generator (Fig. 1).

Within the linear region of the hysteresis cycle, ${\bf B}$ is proportional to:

B
$$(I_p)$$
 = constant (a) $\times I_p$

The Hall voltage is thus expressed by:

$$\mathbf{V}_{H} = (\mathbf{R}_{H}/\mathbf{d}) \times \mathbf{I} \times \mathbf{constant} (\mathbf{a}) \times \mathbf{I}_{P}$$

Except for \boldsymbol{I}_{p^s} all terms of this equation are constant. Therefore:

$$V_{H}$$
 = constant (b) x I_{P}

The measurement signal \mathbf{V}_{H} amplified to supply the user output voltage or current.

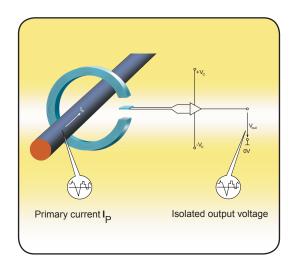
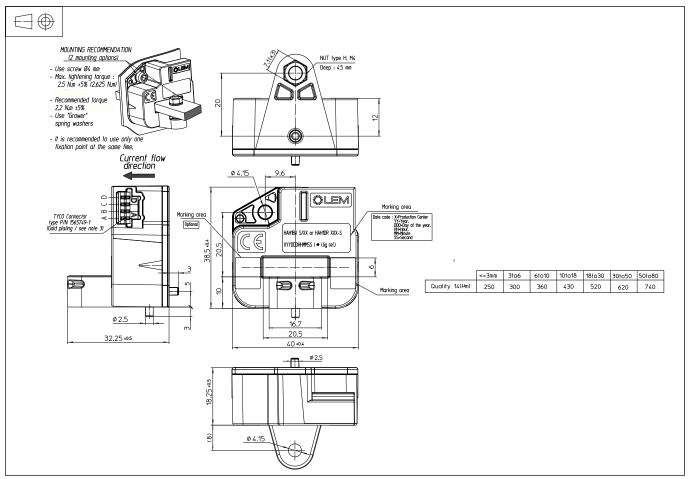
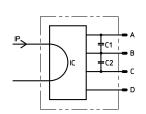



Fig. 1: Principle of the open loop transducer

HAH1BV S/20

Dimensions HAH1BV family (in mm.)

Bill of materials


Plastic case
 Magnetic core
 Pins
 PBT GF 30
 Iron silicon alloy
 Brass gold plated

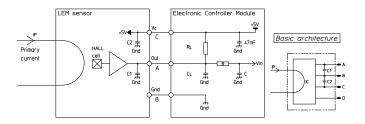
Mass **Remarks**

 $\bullet \quad \textbf{V}_{\text{OUT}} > \frac{\textbf{V}_{c}}{2} \text{ when } \textbf{I}_{\text{P}} \text{ flows in the direction of the arrow.}$

39 g

System architecture

	Components list	DR version	BV version		
IC	Hall sensor ASIC				
C1	Decoupling capacitor	4.7nF	10nF		
C2	Decoupling capacitor	47 nF	100nF		


Pin out					
Α	Vout				
В	Ground				
C	Vc (5V)				
D	Ground				

System architecture (example)

 $R_{_{\rm I}}$ > 10 k Ω optional resistor for signal line diagnostic

V _{OUT}	Diagnosis		
Open circuit	$\mathbf{V}_{IN} = \mathbf{V}_{C}$		
Short GND	V _{IN} = OV		

C_L < 100 nF EMC protection **RC** Low pass filter EMC protection (optional)

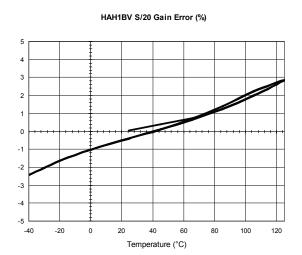
HAH1BV S/20

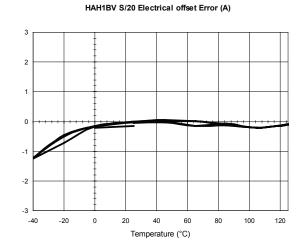
Absolute maximum ratings

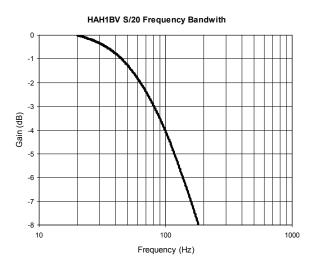
	0			Specification		2 1111
	Symbol	Unit	Min	Тур	Max	Conditions
Electrical Data						
Maximum primary current peak	I _{Pmax}	Α			1)	
Supply continuous over voltage		V			8.5	
Supply over voltage	V _c				14	1 min
Reverse voltage			-14			1 min @ T _A = 25°C
Output over voltage (continuous)	V _{out}	V			8.5	
Output over voltage					14	1 min @ T _A = 25°C
Continuous output current	I _{OUT}	mA	-10		10	
Output short-circuit duration	t _c	min			2	
Rms voltage for AC isolation test	V _d	kV			2	50 Hz, 1 min
Isolation resistance	R _{IS}	MΩ	500			500 V - ISO 16750-2
Electrostatic discharge voltage	V _{ESD}	kV			2	JESD22-A114-B
Ambient storage temperature	T _s	°C	-40		125	

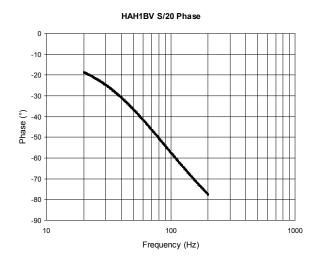
Operating characteristics

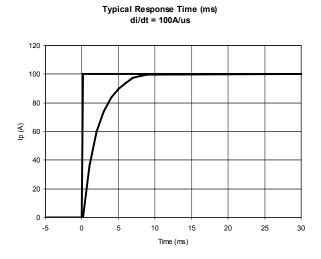
	Symbol Unit		Specification			Conditions
			Min	Тур	Max	Conditions
	Electrical Data					
Primary current	I _P	Α	-500		500	
Calibration current	I _{CAL}	Α	-500		500	@ T _A = 25°C
Supply voltage	V _c	V	4.5	5.00	5.5	
Output voltage	V _{OUT}	V	V _{OUT} =	(V _C /5) x (2.5	+ G x I _P)	@ v _c
Sensitivity 2)	G	mV/A		4		@ V _C = 5 V
Current consumption		mA		7	10	@ $V_{c} = 5 \text{ V, } -40 ^{\circ}\text{C} < T_{A} < 125 ^{\circ}\text{C}$
Power up inrush current	I _c	mA			15	@ V _c < 3.5 V
Load resistance	R _L	ΚΩ	10			
Output internal resistance	R _{out}	Ω			10	
Capacitive loading	C _∟	nF	1		100	
Ambient operating temperature	T _A	°C	-40		125	
Output drift versus power supply		%	-1	0.3	1	
			Performan	ce Data		•
Sensitivity error	$\epsilon_{_{\rm G}}$	%	-1.0	± 0.5	1.0	@ T _A = 25°C, '@ V _C = 5 V
Electrical offset current	I _{OE}	Α		± 1		@ T _A = 25°C, '@ V _C = 5 V
Magnetic offset current	I _{OM}	Α		± 1.2		@ T _A = 25°C, '@ V _{C =} 5 V after ± I _P
Globale offset current	I _o	А		± 2.2		_ @ T _a = 25°C
			- 3.8		3.8	^
Average temperature coefficient of \mathbf{V}_{OE}	TCV _{OE AV}	mV/°C	-0.06	± 0.02	0.06	@ - 40°C < T _A < 125°C
Average temperature coefficient of G	TCG _{AV}	%/°C	-0.04	± 0.02	0.04	@ - 40°C < T _A < 125°C
Linearity error	$\epsilon_{\scriptscriptstyle L}$	%	-1.0		1.0	of full range
Response time to 90 % of \mathbf{I}_{PN} step	t,	ms			5	@ di/dt = 50 A/µs
Frequency bandwidth	BW	Hz			80	@ -3 dB
Output clamping min voltage	V _{sz}	V	0.24	0.25	0.26	@ V _C = 5 V
Output clamping max voltage	V _{sz}	V	4.74	4.75	4.76	@ V _C = 5 V
Output voltage noise peak peak	V _{no pp}	mV	-		10	
Resolution		mV		2.5		@ V _C = 5 V
Power up time		ms		25	100	
Setting time after overload		ms			25	


Notes:


$$I_P = \left(V_{\text{OUT}} - \frac{V_c}{2}\right) \times \frac{1}{G} \times \frac{5}{V_c}$$
 with G in (V/A)


 $^{^{1)}}$ Busbar temperature must be below 150°C. $^{2)}$ The output voltage $\boldsymbol{V}_{\text{OUT}}$ is fully ratiometric. The offset and sensitivity are dependent on the supply voltage $\boldsymbol{V}_{\text{C}}$ relative to the following formula:

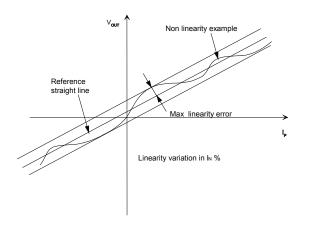



HAH1BV S/20

HAH1BV S/20 PERFORMANCES PARAMETERS DEFINITIONS

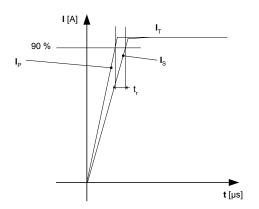
Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear I_c amplifier gain.


Magnetic offset:

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{P\,max}$.

Linearity:


The maximum positive or negative discrepancy with a reference straight line $V_{\text{OUT}} = f(I_{\text{P}})$.

Unit: linearity (%) expressed with full scale of I_p max. Linearity is measured on cycle + I_p , O, - I_p , O, + I_p without magnetic offset (average values used)

Response time (delay time) t.:

The time between the primary current signal and the output signal reach at 90 % of its final value

Typical:

Theorical value or usual accuracy recorded during the production.

Sensitivity:

The Transducer's sensitivity **G** is the slope of the straight line $V_{out} = f(I_p)$, it must establish the relation:

 $V_{out}(I_p) = V_c/5 (G \times I_p + 2.5) (*)$

(*) For all symetrics transducers.

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25° C.

The offset variation \mathbf{I}_{OT} is a maximum variation the offset in the temperature range:

 $I_{OT} = I_{OE} \max - I_{OE} \min$

The Offset drift $\mathbf{TCI}_{\text{OEAV}}$ is the \mathbf{I}_{OT} value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25°C.

The sensitivity variation \mathbf{G}_T is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 \mathbf{G}_{T} = (Sensitivity max - Sensitivity min) / Sensitivity at 25°C.

The sensitivity drift \mathbf{TCG}_{AV} is the \mathbf{G}_{T} value divided by the temperature range.

Offset voltage @ I = 0 A:

Is the output voltage when the primary current is null. The ideal value of \mathbf{V}_{O} is $\mathbf{V}_{\text{C}}/2$ at $\mathbf{V}_{\text{C}}=5$ V. So, the difference of \mathbf{V}_{O} - $\mathbf{V}_{\text{C}}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis.

Environmental test specifications

Name	Standard	Conditions						
Damp heat, steady state	JESD22-A101	85°C - 85°C / 1000h						
Isolation resistance	ISO 16750-2 § 4.10	500 V/1min						
Temperature humidity cycle test	ISO 16750-4	-10 + 85°C 10 days						
Isolation test	IEC 60664-1	2 kV/50 Hz/1min						
	Mechanical tests							
Vibration test (random)	IEC 60068-2-64 ISO 16750-3 & 4.1.6.1.6	20 2000 Hz Random rms (11g rms) 8h/axis						
Terminal strength test	According to LEM							
Thermal shocks	IEC 60068-214 Na	-40 + 125°C 300 cycles						
Free fall	ISO 16750-3 § 4.3	1m concrete ground						
	EMC Test							
Radiated electronagnetic immunity	Directive 2004/104/CE ISO 11452-2	30 V/m 20-2000 MHz						
Bulk current injection immunity	Directive 2004/104/CE ISO 11452-4	1-400 MHz						
Radiated radio frequency electromagnetic field immunity	IEC 61000-4-3	80 MHz to1,000 MHz - 10 V/m						
Electrostatic discharge immunity test	IEC 61000-4-2	Air discharge=2 kV						