AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1DRW 1000-S

RøHS

Introduction

The HAH1DRW family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH1DRW family gives you the choice of having different current measuring ranges in the same housing.

Features

- Ratiometric transducer
- Open Loop transducer using the Hall effect
- Low voltage application
- Unipolar + 5 V DC power supply
- Primary current measuring range $\pm 1000 \mathrm{~A}$
- Maximum RMS primary admissible current: defined by busbar to have $\mathrm{T}^{\circ}<+150^{\circ} \mathrm{C}$
- Operating temperature range: $-40^{\circ} \mathrm{C}<\mathrm{T}^{\circ}<125^{\circ} \mathrm{C}$
- Output voltage: full ratio-metric (in sensitivity and offset).

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- Galvanic separation
- High frequency bandwith
- Non intrusive solution.

Automotive applications

- Electrical Power Steering
- Starter Generators
- Converters
- Battery Management
- Motor drive application.

Principle of HAH1DRW Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall voltage, is generated by the primary current I_{p} to be measured. The current to be measured I_{p} is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, B is proportional to:

$$
B\left(I_{\mathrm{p}}\right)=\text { constant }(\mathrm{a}) \times I_{\mathrm{P}}
$$

The Hall voltage is thus expressed by:

$$
V_{\mathrm{H}}=\left(R_{\mathrm{H}} / \mathrm{d}\right) \times I \times \text { constant }(\mathrm{a}) \times I_{\mathrm{P}}
$$

Except for I_{P}, all terms of this equation are constant. Therefore:

$$
V_{\mathrm{H}}=\text { constant }(\mathrm{b}) \times I_{\mathrm{P}}
$$

The measurement signal V_{H} amplified to supply the user output voltage or current.

Fig. 1: Principle of the open loop transducer

Dimensions HAH1DRW 1000-S (in mm)

Mechanical characteristics

- Plastic case
- Magnetic core
- Pins
- Mass

Mounting recommendation

- Mating connector type TYCO connector P/N 1473672-1
- Assembly torque
$2.2 \mathrm{Nm} \pm 5$ \%
- Soldering type

N/A
Electronic schematic

PBT GF30
FeSi wound core
Brass tin plated
$57 \mathrm{~g} \pm 5 \%$

HAH1DRW 1000-S
Absolute ratings (not operating)

Parameter	Symbol	Unit	Specification			Conditions
			Min	Typical	Max	
Maximum supply voltage	$U_{\text {c }}$	V	-0.5		8	1)
Ambient storage temperature	$T_{\text {s }}$	${ }^{\circ} \mathrm{C}$	-40		125	
Electrostatic discharge voltage (HBM)	$U_{\text {ESD }}$	kV			2	JESD22-A114-B
Maximum admissible vibration (random r.m.s)	V	$\mathrm{m} \cdot \mathrm{s}^{-2}$			96.6	10 to $2000 \mathrm{~Hz},-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
RMS voltage for AC insulation test	$U_{\text {d }}$	kV			2.5	$50 \mathrm{~Hz}, 1 \mathrm{~min}$
Creepage distance	$d_{\text {cp }}$	mm	5.2			
Clearance	$d_{\text {c }}$	mm	4.9			
Comparative traking index	CTI	V	PLC3 (175 V - 250 V)			-
Maximum output Current	$I_{\text {out }}$	mA	-10		10	
Maximum output Voltage	$V_{\text {out }}$	V	-0.5		$U_{C}+0.5$	
Maximum reverse current	$I_{\text {R }}$	mA			80	

Operating characteristics in nominal range (I_{PN})

Parameter	Symbol	Unit	Specification			Conditions
			Min	Typical	Max	
Electrical Data						
Primary current, measuring range	$I_{\text {PM }}$	A	-1000		1000	
Primary nominal DC or RMS current	$I_{\text {PN }}$	A	-1000		1000	
Supply voltage	$U_{\text {c }}$	V	4.75	5	5.25	
Ambient operating temperature	$T_{\text {A }}$	${ }^{\circ} \mathrm{C}$	-40	-	125	
Output voltage (Analog)	$V_{\text {out }}$	V	$V_{\text {out }}=\left(U_{\mathrm{C}} / 5\right) \cdot\left(V_{0}+G \cdot I_{\mathrm{P}}\right)$			
Sensitivity	G	mV / A		2		@ $T_{\text {A }}=25^{\circ} \mathrm{C}$
Offset voltage	V_{0}	\checkmark		2.5		
Current consumption	$I_{\text {c }}$	mA		20	25	$-40^{\circ} \mathrm{C}<T_{\mathrm{A}}<125^{\circ} \mathrm{C}$
Load resistance	R_{L}	$\mathrm{K} \Omega$	10			
Output internal resistance	$R_{\text {out }}$	Ω		1	10	
Performance Data						
Ratiometricity error	ε_{r}	\%		± 0.5		
Sensitivity error	ε_{G}	\%		± 0.6		@ $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Electrical offset current	$I_{\text {OE }}$	mV		± 3		$@ T_{\mathrm{A}}=25^{\circ} \mathrm{C}, @ U_{\mathrm{C}}=5 \mathrm{~V}$
Magnetic offset voltage	$V_{\text {OM }}$	mV		± 2		$@ U_{\mathrm{C}}=5 \mathrm{~V}, @ T_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Linearity error	ε	\%	-1		1	\% of full scale
Average temperature coefficient of $V_{\text {OE }}$	TCV oEAV	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		± 0.04		
Average temperature coefficient of G	$T C G_{\text {AV }}$	\%/ ${ }^{\circ} \mathrm{C}$		± 0.02		
Step response time @ 70 \%	t_{r}	$\mu \mathrm{s}$		2	6	$\mathrm{d} / \mathrm{d} \mathrm{d}=100 \mathrm{~A} / \mu \mathrm{s}$
Frequency bandwidth	BW	kHz	40			@ - 3 dB
Output voltage noise peak-peak \square	$V_{\text {no } p-p}$	mV			14	DC to 1 MHz
Output RMS voltage noise	$V_{\text {no }}$	mV			2.2	
Phase shift	$\Delta \varphi$	。	-4			DC to 1 KHz

Notes: ${ }^{1)}$ Exceeding 6.5 V may temporarily reconfigure the device until next power on.

HAH1DRW 1000-S

Global Absolute Error (mV) @ $U_{c}=5 \mathrm{~V}$

$I_{P}(\mathbf{A})$	Accuracy © $25^{\circ} \mathrm{C}(\mathrm{mV})$	Accuracy @ T° range (mV)
$-I_{P_{\max }}$	45	65
0	13	18
$I_{\text {Pmax }}$		45

HAH1DRW 1000-S

PERFORMANCES PARAMETERS DEFINITIONS

Primary current definition:

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 \% tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 \%. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27%, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, maximal and minimal values are determined during the initial characterization of a product.

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of I_{PN}.

Linearity:

The maximum positive or negative discrepancy with a reference straight line $V_{\text {out }}=f\left(I_{p}\right)$.
Unit: linearity (\%) expressed with full scale of I_{PN}.

Response time (delay time) t_{r} :

The time between the primary current signal (I_{PN}) and the output signal reach at 90% of its final value.

Sensitivity

The Transducer's sensitivity G is the slope of the straight line $V_{\text {out }}=f\left(I_{P}\right)$, it must establish the relation:
$V_{\text {out }}\left(I_{\mathrm{P}}\right)=U_{\mathrm{C}} 15\left(G \cdot I_{\mathrm{P}}+V_{\mathrm{o}}\right)$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at $25^{\circ} \mathrm{C}$.
The offset variation $I_{O T}$ is a maximum variation the offset in the temperature range:
$I_{\text {OT }}=I_{\text {OE }} \max -I_{\text {OE }} \min$
The Offset drift $\mathrm{TCl}_{\text {OEAv }}$ is the $I_{\text {OT }}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at $25^{\circ} \mathrm{C}$.
The sensitivity variation G_{T} is the maximum variation (in ppm or $\%)$ of the sensitivity in the temperature range:
$G_{T}=\left(\right.$ Sensitivity max - Sensitivity min) / Sensitivity at $25^{\circ} \mathrm{C}$.
The sensitivity drift $T C G_{A V}$ is the G_{T} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_{\mathrm{P}}=0 \mathrm{~A}$:

The offset voltage is the output voltage when the primary current is null. The ideal value of V_{o} is $U_{\mathrm{C}} / 2$ at $U_{\mathrm{C}}=5 \mathrm{~V}$. So, the difference of $V_{o}-U_{c} / 2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

HAH1DRW 1000－S

Environmental test specifications：

Refer to LEM GROUP test plan laboratory CO．11．11．515．0 with＂Tracking＿Test Plan＿Auto＂sheet．

