

AUTOMOTIVE CURRENT TRANSDUCER HAH3DR 700-S00

Introduction

The HAH3DR family, a tri-phase tranducer for is the electronic measurement of DC, AC or pulsed currents in high power automotive applications with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH3DR family gives you the choice of having different current measuring ranges in the same housing (from ± 100 A up to ± 900 A).

Features

- · Open Loop transducer using the Hall effect
- PCB mounting
- Low voltage application
- Unipolar + 5 V DC power supply •
- Primary current measuring range up to ± 700 A
- Maximum RMS primary current limited by the busbar, the • magnetic core or the ASIC temperature T° < + 150°C
- Operating temperature range: 40°C < T° < + 125°C •
- Output voltage: full ratiometric (in sensitivity and offset). •

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift •
- Very low thermal sensitivity drift •
- Wide frequency bandwidth •
- No insertion losses •
- Very fast response time.

Automotive applications

- Starter Generators
- Inverters
- **HEV** application
- EV application
- DC / DC converter.

Principle of HAH3DR Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall voltage, is generated by the primary current $\mathbf{I}_{\!\scriptscriptstyle \mathrm{P}}$ to be measured.

The current to be measured I_{p} is supplied by a current source i.e. battery or generator (Fig. 1).

Within the linear region of the hysteresis cycle, B is proportional to:

B
$$(\mathbf{I}_{P})$$
 = constant (a) x \mathbf{I}_{P}

The Hall voltage is thus expressed by:

 $\mathbf{V}_{\perp} = (\mathbf{R}_{\perp}/\mathbf{d}) \times \mathbf{I} \times \text{constant} (\mathbf{a}) \times \mathbf{I}_{\mathbf{b}}$

Except for I_{p} , all terms of this equation are constant. Therefore:

$$V_{\mu}$$
 = constant (b) x I_{P}

The measurement signal V_{μ} amplified to supply the user output voltage or current.

Page 1/5

HAH3DR 700-S00

Dimensions HAH3DR family (in mm)

Bill of materials

- Plastic case PBT GF 30 % (UL 94 V0)
- Magnetic core
 FeSi wound core
- Pins Copper alloy tin plated (lead free)
- Mass 74 g ± 5 %

 $\begin{array}{ll} \textbf{R}_{_L} & >10 \ k\Omega \ optional \ resistor \ for \ signal \ line \ diagnostic \\ \textbf{4} \ nF < \textbf{C}_{_L} < 18 \ nF \ EMC \ protection \\ Nominal \ value \ 4.7 \ nF \\ (\textbf{C}_{_L} \ is \ an \ obligation \ to \ stabilize \ and \ to \ avoid \ the \\ undulation \ of \ the \ output \ signal) \end{array}$

Capacitor of V _{ref} /GND	1 nF < C2 < 47 nF
Capacitor of V _c /GND	47 nF < C1 < 1 μF

Electronic schematic

Absolute maximum ratings

HAH3DR 700-S00

Paramotor	Symbol	Unit	Specification			Conditions	
Falameter			Min	Тур	Max	Conditions	
Electrical Data							
Max primary current peak	I _{Pmax}	A			1)		
Supply continuous over voltage V _c		V			8	Not operating	
	V _c				6.5	Exceeding this voltage may temporarily reconfigure the circuit until next power-on	
Output voltage min	- V _{sz}	V	X			0.2	@ V _c = 5 V, T _A = 25°C
Output voltage max		<u>,</u> V	4.8			@ V _c = 5 V, T _A = 25°C	
Maximum reverse polarity current 2)		mA	-80		80		
Continuous output current	I _{OUT}	mA	-1		1	R _L = 10 kΩ	
Rms voltage for AC isolation test	V _d	kV			2.5	50 Hz, 1 min, IEC 60664 part1	
Isolation resistance	R _{IS}	MΩ	500			500 V DC- ISO 16750	
Electrostatic discharge voltage (HBM)	V _{ESD}	kV			2	JESD22-A114-B class 2	
Ambient storage temperature	T _s	°C	-50		125		
Clearance distance	dCl	mm		3.78			
Creepage distance	dCp	mm		4.78			

Operating charcteristics

Parameter	Symbol	Unit	Specification			Conditions
Falanielei			Min	Тур	Max	Conditions
Electrical Data						
Primary current	I _P	A	-700		700	
Supply voltage *)	V _c	V	4.75	5.00	5.25	
Output voltage (Analog) 3)	V _{OUT}	V	V _{out} = (V _c /5) × (2.5 -	+ G X I _P)	@ v _c
Sensitivity 3)*)	G	mV/A		2.86		@ V _c = 5 V
Current consumption (for 3 phases) *)	I _c	mA		44	50	@ $V_{c} = 5 V$, @ - 40°C < $T_{A} < 125$ °C
Load resistance	R	KΩ	10			
Output internal resistance	R _{OUT}	Ω			10	DC to 1 kHz
Capacitive loading	C	nF	4	4.7	18	
Ambient operating temperature	T _A	°C	-40		125	
Output drift versus power supply	V _{OUT PS}	%		0.5		
Performance Data (Phases Coupling influences included) @ 4 Sigma						
*)	_	ε _G %		± 0.5		@ T _A = 25°C
	ε _g			± 1		@ T _A = 25°C, after T° cycles
Electrical offset voltage *)	V _{OE}			± 4		@ T _A = 25°C, @ V _C = 5 V
Magnetic offset current *)	V _{OM}	mV	-7.5		7.5	@ \mathbf{T}_{A} = 25°C, @ \mathbf{V}_{C} = 5 V, after ± \mathbf{I}_{P}
Global offset voltage *)	V _o		-20.0		20.0	@ \mathbf{T}_{A} = 25°C, @ \mathbf{V}_{C} = 5 V, Hysteresis included
Average temperature coefficient of $V_{\text{\tiny OE}}$	TCV	mV/°C	-0.15		0.15	@ - 40°C < T° < 125°C
Average temperature coefficient of G	TCG _{AV}	%/°C	-0.040	± 0.01	0.040	@ - 40°C < T° < 125°C
Linearity error *)	ε _L	%	-1		1	@ $V_{c} = 5 \vee @, T_{A} = 25^{\circ}C, @ I = I_{P}$
Response time to 90 % of I _{PN} step	t	μs		4	6	@ di/dt = 100 A/µs
Frequency bandwidth 4)	BW	kHz	40			@ -3 dB
Phase delay		0	-4		0	@ DC to 1 kHz
Output voltage noise peak-peak	V _{no pp}	mV			20	DC to 1MHz

Notes: ⁷ The parameter with *) will be checked 100% during the calibration phase

- ¹⁾ Busbar temperature must be below 150°C
- ²⁾Transducer not protected against reverse polarity
- ³⁾The output voltage \mathbf{V}_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage \mathbf{V}_{c} relative to the following formula:

$$I_{P} = \left(V_{out} - \frac{V_{c}}{2}\right) \times \frac{1}{G} \times \frac{5}{V_{c}} \quad \text{with } G \text{ in (V/A)}$$

⁴⁾ Tested only with small signal only to avoid excessive heating of the magnetic core.

HAH3DR 700-S00

Global absolute error specified at 4 Sigma

I _Р (A)	Globale error @ 25°C (mV)	Globale error @ T° range (mV)
-700	±40.0	±85.0
0	±20.0	±35.0
700	±40.0	±85.0

HAH3DR 700-S00

PERFORMANCES PARAMETERS DEFINITIONS

Sensitivity:

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear ${\rm I}_{\rm c}$ amplifier gain.

Magnetic offset:

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{P max}$.

Linearity:

The maximum positive or negative discrepancy with a reference straight line $V_{\text{out}} = f(I_p)$.

Unit: linearity (%) expressed with full scale of $I_{P max}$.

Linearity is measured on cycle + I_{p} , O, - I_{p} , O, + I_{p} without magnetic offset (average values used).

Response time (delay time) t,:

The time between the primary current signal and the output signal reach at 90 % of its final value.

Typical:

Theoretical value or usual accuracy recorded during the Design Validation tests.

The Transducer's sensitivity **G** is the slope of the straight line $V_{out} = f(I_p)$, it must establish the relation: $V_{out}(I_p) = V_c/5 (G \times I_p + 2.5) (*)$

(*) For all symetrics transducers.

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25° C.

The offset variation $\mathbf{I}_{_{\mathrm{OT}}}$ is a maximum variation the offset in the temperature range:

 $I_{OT} = I_{OF} \max - I_{OF} \min$

The Offset drift $\textbf{TCI}_{\text{DEAV}}$ is the \textbf{I}_{OT} value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25°C.

The sensitivity variation \mathbf{G}_{T} is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 \mathbf{G}_{T} = (Sensitivity max - Sensitivity min) / Sensitivity at 25°C. The sensitivity drift $\mathbf{TCG}_{\mathrm{AV}}$ is the \mathbf{G}_{T} value divided by the temperature range.

Offset voltage @ $I_P = 0 A$:

Is the output voltage when the primary current is null. The ideal value of $V_{\rm o}$ is $V_{\rm c}/2$ at $V_{\rm c} = 5$ V. So, the difference of $V_{\rm o}$ - $V_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis.

Environmental test specifications

See PV test.

Page 5/5