

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HC5F900-S

Introduction

The HC5F family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HC5F family gives you the choice of having different peak currents (from \pm 200 A up to \pm 900 A) in the same housing.

Features

- Open Loop transducer using the Hall effect
- Low voltage application
- Unipolar + 5 V DC power supply
- Primary current measuring range up to ± 900 A
- Maximum RMS primary current limited by the busbar, the magnetic core or the ASIC temperature T° < + 150 °C
- Operating temperature range: 40 °C < T° < + 125 °C
- Output voltage: full ratiometric (sensitivity and offset)
- High speed transducer.

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift.

Automotive applications

- Electrical Power Steering
- Starter Generators
- Converters.

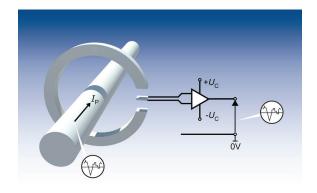
Principle of HC5F Family

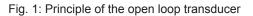
The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density *B*, contributing to the rise of the Hall voltage, is generated by the primary current I_p to be measured. The current to be measured I_p is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

$$(I_{\rm P})$$
 = constant (a) x $I_{\rm P}$

The Hall voltage is thus expressed by:

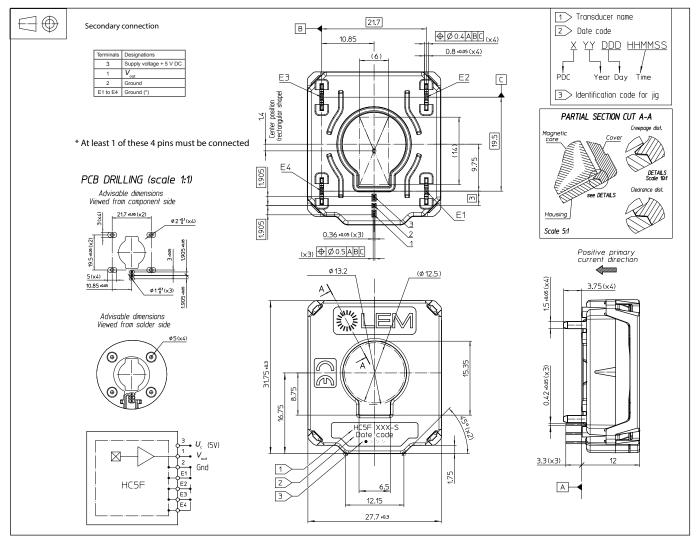

R


 $V_{\rm H}$ = ($R_{\rm H}$ /d) x I x constant (a) x $I_{\rm P}$

Except for $I_{\rm p},$ all terms of this equation are constant. Therefore:

 $V_{\rm H}$ = constant (b) x $I_{\rm P}$

The measurement signal $V_{\rm H}$ amplified to supply the user output voltage or current.

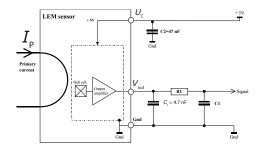


HC5F900-S

Dimensions (in mm)

Mechanical characteristics

• Plastic case


•

PA66-GF25

- Magnetic core FeSi alloy •
 - 26 g Mass
- Electrical terminal coating Copper alloy base •

tin plated (lead free)

Electronic schematic

Remarks

$$I_{\rm P} = \left(\frac{5}{U_{\rm c}} \cdot V_{\rm out} - V_{\rm o}\right) \cdot \frac{1}{G}$$
 with G in (V/A)

 $V_{\rm out}$ > $V_{\rm o}$ when $I_{\rm P}$ flows in the positive direction (see arrow • on drawing).

R > 10 KΩ $C_{\text{LOAD}}^{\text{LOAD}}$ Nominal value 4.7 nF ± 10 % (C_{LOAD} is obligation to stabilize and to avoid the ondulation of

R1C1 low pass filter EMC protection (optional)

HC5F900-S

Absolute ratings (not operating)

Parameter	Symbol	Unit	Specification			Conditions
			Min	Typical	Max	Conditions
Supply over voltage		V			7	No operating, 1 min @ 25°C
Reverse voltage	U _c	v	N	Not applicable		
Ambient storage temperature	T _s	°C	- 55		150	Tested after 64 h @ - 55 °C connected
Electrostatic discharge voltage	U _{ESD}	kV			2	JESD22-A 114-B
Maximum admissible vibration (random)	γ	m•s⁻²			200	ISO 16750-3&4.1.2.1.2.1
Rms voltage for AC insulation test, 50 Hz, 1 min	U _d	kV			1.2	IEC 60664 Part 1
Creepage distance	d _{Cp}	mm		1.2		
Clearance	d _{ci}	mm		1.65		
Maximum continuous output current	I _{out}	mA	- 10		10	
Maximum output voltage	V _{out}	V	- 0.5		$U_{\rm c} + 0.5$	No operating
Maximum Output short circuit duration	t _c	s			2	

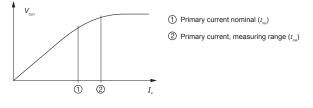
Operating characteristics in nominal range ($I_{\rm PN}$)

Devemeter	Symbol	linit	S	pecificat	ion	Conditions		
Parameter	Symbol		Min	Typical	Max	Conditions		
Electrical Data								
Primary current, measuring range	I _{PM}	A	- 900		900			
Supply voltage 1)	U _c	V	4.75	5.00	5.25			
Ambient operating temperature	T _A	°C	- 40		125			
Output voltage (Analog)	V _{out}	V	$V_{\rm out} = ($	$V_{\rm out} = (U_{\rm c}/5) \cdot (V_{\rm o} + G \cdot I_{\rm P})$		@ U _c		
Sensitivity	G	mV/A		2.22		@ U _c =5 V		
Current consumption	I _c	mA		12	20			
Load resistance	R	ΚΩ	10					
Capacitive loading	CL	F		4.7				
Output internal resistance	R _{out}	Ω			10			
Performance Data ¹⁾								
Sensitivity error	ε _G	%	- 2		2	@ $T_{A} = 25 ^{\circ}\text{C}$, @ $U_{C} = 5 ^{\circ}\text{V}$		
Electrical offset	I	A	- 3.8	± 2	3.8	@ T _A =25 °C		
Magnetic offset	I _{om}	A	- 2.4	± 1.50	2.4	@ After excursion to $\pm I_{\rm P}$ @ $T_{\rm A}$ = 25 °C		
Offset current	I _o	A	- 4.6		4.6	<i>T</i> _A =25 °C		
Average temperature coefficient of $I_{\rm OE}$	TCI	mA/°C	- 36	± 10	36	@ - 40 °C < T° < 125 °C, <i>U</i> _c		
Average temperature coefficient of G	TCG _{AV}	%/°C	- 0.050	± 0.025	0.050	@ - 40 °C < T° < 125 °C, <i>U</i> _c		
Linearity error		% I _P	- 2		2	Of full range, $I_{\rm P}$ > 800 A or < - 800 A		
	ε		- 1		1	Of full range, - 800 A or < $I_{\rm P}$ < 800 A		
Step response time to 90 % $I_{\rm PN}$	t _r	μs		5	10			
Frequency bandwidth 2)	BW	kHz	30			@ - 3 dB		
Output voltage low	V _{out L}	V	0.1			@ $U_{c} = 5 V$		
Output voltage high	V _{out H}	V			4.9	@ $U_{c} = 5 V$		
Output voltage noise peak-peak	V _{no p-p}	mV			15	DC to 1 MHz		
Output rms voltage noise rms	V _{no rms}	mV			2.9	DC to 1 MHz		

<u>Notes</u>: ¹⁾ The output voltage V_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage U_c relative to the following formula:

$$I_{\rm P} = \left(\frac{5}{U_{\rm c}} \cdot V_{\rm out} - V_{\rm o}\right) \cdot \frac{1}{G} \text{ with } G \text{ in (V/A)}$$

²⁾ Small signal only to avoid excessive heating of the busbar, the magnetic core and the ASIC.

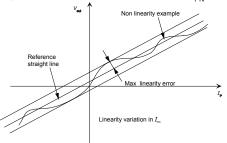


HC5F900-S

PERFORMANCES PARAMETERS DEFINITIONS

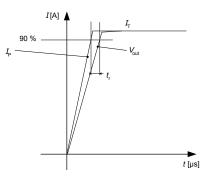
Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.


Magnetic offset:

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{\rm PN}$

Linearity:


The maximum positive or negative discrepancy with a reference straight line $V_{out} = f(I_{P})$.

Unit: linearity (%) expressed with full scale of I_{PN} .

Response time (delay time) t_r:

The time between the primary current signal ($I_{\rm PN}$) and the output signal reach at 90 % of its final value.

Typical:

Theorical value or usual accuracy recorded during the production.

Sensitivity:

The Transducer's sensitivity *G* is the slope of the straight line $V_{\text{out}} = f(I_{\text{P}})$, it must establish the relation:

$$V_{\rm out}(I_{\rm P}) = U_{\rm C}/5 (G \cdot I_{\rm P} + V_{\rm o})$$

16March2015/Version 2

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 $^{\circ}$ C.

The offset variation $I_{o\tau}$ is a maximum variation the offset in the temperature range:

 $I_{\rm OT}$ = $I_{\rm OE}$ max - $I_{\rm OE}$ min

The Offset drift TCI_{OEAV} is the I_{OT} value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 °C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 G_{τ} = (Sensitivity max - Sensitivity min) / Sensitivity at 25 °C.

The sensitivity drift TCG_{AV} is the G_{τ} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_{p} = 0$ A:

The offset voltage is the output voltage when the primary current is zero. The ideal value of $V_{\rm O}$ is $U_{\rm C}/2$ at $U_{\rm c}$ = 5 V. So, the difference of $V_{\rm O}$ - $U_{\rm C}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Environmental test specifications:

NAME	STANDARD	CONDTIONS						
ENVIRONMENTAL TESTS								
Thermal shocks	IEC 60068-2-14 test Na (01/2009)	T° - 40 °C to 125 °C / 30 mn each, 300 cycles not connected						
T° humidity cyclic	ISO 16750-4	10 cycles of 24 H, high T°, power supply on monitored						
Power temp cycle	IEC 60068 Part 2-14 test Nb (01/2009)	T° - 40 °C to 125 °C, 15 mn/step, transition time 15 mn 600 cycles						
Temperature humidity bias	JESD22-A101 (04/97)	T° 85 °C / 85 % RH / 1000 H power supply on, monitored each 6H						
MECHANICAL TESTS								
Sinus vibration	& 4.1.2.1.2.1	No power supply- profile 1 f = 100 to 1000 Hz, g = 100 to 200 m/s², 22 H/axis, axis, T °C cycle - 40 °C to 125 °C						
Random vibration		No power supply g rms = 27.8 m/s², f = 10 Hz to 1 kHz, PSD = 0.14 to 20 (m/s²) ²/Hz 12 H/axis X and 36 H for axis Z, T°C. cycle - 40 °C to 125 °C						
Stocks	IEC 60068-2-27 (02/2008)	Half sine shocks @ 25 °C, 25 g/ 15 ms, 132 shocks direction, 6 directions, 100 g/11 ms, 3 shock/direction, 6 directions						
Drop test	ISO 16750-3& 4.3 (08/2007)	Drop 1 m, 2 falls/part, 1 part/axis, 6 directions, parts without PCB						
ELECTRICAL TESTS								
Rms voltage for AC insulation test	IEC 60664-1	1.2 kV/50 Hz/1 mn						
Insulation resistance	ISO 16750-2& 4.10	500 V DC, 25 °C, <i>R</i> _{insulation} > 10 MOhms						
EMC TESTS								
Electrostatic discharge	IEC 61000-4-2	Contact ± 2 kV , air ± 2 kV						
Electrostatic discharge	JESD22-A114-B	HBM: 1.5 kOhms / 100 pF 2kV						

www.lem.com